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Abstract A new diol with azoaromatic pendant was prepared by N-phenyl-4-

amido-3,4-dichloromaleimide with 2-mercaptoethanol in the presence of NaOH,

and used to obtain photosensible poly(urethane-urea) varnish. A poly(urethane-

urea) varnish bearing azobenzene chromophores, based on a poly(ethylene adi-

pate)diol (average molecular weight—2000), 4,40-dibenzyldiisocyanate, diethylene

glycol, trimethylolpropane, and afore-mentioned diol, were prepared and charac-

terized. The polymers were characterized by FTIR spectroscopy, thermal analysis

(DMA, DSC, and TGA), and the photochromic behavior by UV irradiation of thin

films was discussed.

Keywords Poly(urethane-urea) � Azobenzene � Photosensitive polymers �
Thermal behavior

Introduction

Synthesis and properties of polymeric materials containing different chromophores

covalently attached to the polymer backbone have attracted an increasing interest in

the recent years, not only for their photophysical properties but also for their

applications [1–3]. Azobenzene is a typical photoresponsive unit showing the well-

established reversible photopolymerization behavior among the variety of photo-

active chromophores. Azobenzene-functionalized polymers are one of the actively

studied subjects, and various polymers with azobenzene moiety have been reported
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[4–18]. Considering the great versatility of polyurethanes and their special

properties, various monomeric and polymeric materials carrying azoaromatic

chromophores were prepared and their photobehavior was studied taking into

account the development of the new photochromic non-linear optical, liquid–

crystal, or biological system [19–23].

Previously, we reported polyaminobismaleimide resin having urethane groups

[24, 25], poly(ester-urethane-imide)s [26] and polyurethane-bismaleimide semi-

interpenetrate materials [27]. Our research has focused upon incorporation of new

chromophores, prepared by substitution reaction of dichloromaleimides containing

azobenzene units into polyurethane.

Experimental

Measurements

The ATR-FTIR spectra were determined using a Bruker Vertex 70 Instruments

equipped with a Golden Gate single reflection ATR accessory, spectrum range

600–4000 cm-1.

The 1H-NMR and 13C-NMR spectra were recorded using a Bruker NMR

spectrometer, Avance DRX 400 MHz, using DMSO-d6 as solvents and tetrameth-

ylsilane as an internal standard.

Melting and softening points were determined using a Gallenkamp hot-block

point apparatus.

Dynamic contact angles were performed by the Wilhelmy plate technique, using

a Sigma 700 precision tensiometer produced by KSV Instruments. The sample plate

dimensions were 50 9 8 mm, and rate of immersion-emersion was 5 mm/min in

water. Immersion depth was 5 mm in standard conditions. All measurements were

the average of three contact angle measurements of samples.

Dynamic mechanical experiments were made using a Diamond PerkinElmer

instrument that applies a sinusoidal stress to the sample and measure the resulting

strain. The force amplitude used was well within the linear viscoelastic range for all

investigated samples. The thermo-mechanical properties were evaluated, starting

from room temperature up to beyond the temperature corresponding to glass

transition, at a heating rate of 4 �C/min and a frequency of 1 Hz, under nitrogen

atmosphere. The size of films was of 10 9 10 9 0.5 mm for the tension attachment.

Thermogravimetric analysis (TGA) was performed under nitrogen flow (15 cm3/

min) at a heating rate of 20 �C/min from 25 to 550 �C with a Mettler Toledo model

TGA/SDTA 851. The initial mass of the samples was 4–6 mg.

Differential scanning calorimetry (DSC) measurements were performed using a

Mettler TA Instrument DSC 12E with a heating rate of 15 �C/min, in nitrogen.

Irradiations were carried out using a 500 W high pressure lamp and a proper filter

(k = 365 nm) at room temperature. The polymer film was prepared by coating the

polymer solution in DMF (c = 1 g/dL) onto quartz plates and then allowed to dry at

50–55 �C under reduced pressure for 2–3 days.
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Reagents and materials

The polyurethane component was prepared from:

– 4,40-Dibenzyldiisocyanate (DBDI, local work), recrystallized from cyclohexane,

M = 264, mp = 91 �C.

– Poly(ethylene glycol) adipate (PEGA, Baxenden) with a molar weight of 2000

and hydroxyl number cOH = 56 mg KOH/g, with functionality of two,

trimethylolpropane (TMP, Aldrich) and diethylene glycol (DEG, Aldrich) were

used as received.

– 1,4-Diazabicyclo[2.2.2]octane (DABCO, Aldrich)

– Dimethylformamide (DMF, Aldrich) which was purified and dried by vacuum

distillation on 4,40-DBDI, bp = 153 �C.

The 4-amino-azobenzene was prepared from aniline, according to the literature

procedure [28].

Synthesis of chromophore diol 4

3,4-Dichloromaleimidobenzoic acid (1) was prepared from p-aminobenzoic acid

and dichloromaleic anhydride in acetic acid according to the literature procedure

[29] (mp = 315–319 �C; mp [ 305 �C, [30]).

3,4-Dichloromaleimidobenzoic acid chloride (2) was prepared from 1 using

thionyl chloride in toluene (mp = 225–228 �C [31]).

N-Phenyl-4-amido-azobenzene-3,4-(dichloro)maleimide (3) 0.01 mol of 2 in

100 mL acetone was cooled in an ice bath. Triethylamine (0.01 mol) as acid

acceptor and a solution of 4-aminoazobenzene (0.01 mol) in 50 mL acetone were

added. After stirring for 1 h at room temperature, the mixture was filtered, washed

with water and methanol, and dried in a vacuum oven at 60 �C to give 3.6 g (yield

90%).

Analysis calculated for C23H14N4O3Cl2 (465.271): C, 59.37; H, 3.03; N, 12.04;

Cl, 15.24%. Found: C, 59.63; H, 2.97; N, 11.64; Cl, 15.43%.

IR (KBr, cm-1): 1740, 1670, 1630, 1600, 1530, 1510, 1415, 1385, 1270, 1130,

990, 855, 750, and 695.
1H-NMR (DMSO-d6, TMS), d (ppm): 10.72 (s, 1H, NH), 8.10 (2d, 4H, J1 =

8.4 Hz, J2 = 8.4 Hz), 7.95 (d, 2H, J = 8.4 Hz), 7.88 (d, 2H, J = 6.8 Hz), 7.58 (m,

5H, J1 = 8.4 Hz, J2 = 8 Hz). 13C-NMR (DMSO-d6), d (ppm): 120.43, 122.38,

123.50, 126.46, 126.52, 128.88, 129.96, 130.36, 131.67, 132.91, 135.15, 147.88,

152.03, 161.84, 165.52.

4-{3,4-bis[(2-hydroxyethyl)thio]-2,5-dioxo-2,5-dihydro-1N-pyrrol-1-yl}-N-{4-[(E)-

phenyl diazenyl]phenyl}benzamide (4) was obtained by the Lynch method [32]

through of reaction between dichloromaleimide (3) (1 mol) and 2-mercaptoethanol

(2 mol) in the presence of an alcoholic NaOH solution. A detail synthetic method

used to obtain compound 4 is described below. The flask was charged with 0.8 g

(0.02 mol) of sodium hydroxide and 100 mL methanol and stirred for 30 min, and

then 1.56 g (0.02 mol) of 2-mercaptoethanol was added. After 20 min of stirring,
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50 mL solution of 4.65 g (0.01 mol) of dichloromaleimide 3 in DMF was added while

vigorous stirring. The flask was gradually heated up to reflux and maintained at this

temperature for 3 h. The reaction mixture was precipitated after cooling with water.

The solid was filtered, washed with water and methanol, and dried at 60 �C in a

vacuum oven for 12 h (yield 85%).

Analysis calculated for C27H24N4O5S2 (548.617): C, 59.11; H, 4.41; N, 10.21; S,

11.69%. Found: C, 59.36; H, 4.56; N, 9.89; S, 11.52%.

IR (KBr, cm-1): 3350, 2980, 1775, 1720, 1660, 1600, 1510, 1390, 1320, 1265,

1200, 1155, 1130, 1060, 1020, 845, 775, 750, 695, 555.
1H-NMR (DMSO-d6, TMS), d (ppm): 10.71 (s, 1H, NH), 8.10 (2d, 4H,

J1 = 8 Hz, J2 = 8.8 Hz), 7.95 (d, 2H, J = 8.4 Hz), 7.88 (d, 2H, J = 8 Hz), 7.56

(m, 5H, J = 7.6 Hz), 3.70 (t, 4H, J = 6 Hz), 3.45 (t, 4H, J = 6 Hz). 13C-NMR

(DMSO-d6), d (ppm): 34.15, 60.76, 120.50, 122.38, 123.50, 126.21, 128.75, 129.38,

131.05, 133.60, 134.61, 136.04, 142.27, 147.75, 152.05, 164.87, 165.26.

General procedure for the preparation of the polyurethane varnishes

Component I

PEGA (25 mmol), TMP (9 mmol) were dehydrated at 120 �C, for 4 h in vacuum,

before use, they were dissolved in methylene chloride (48 g). To this solution, a

mixture of DEG and monomer 4 (33 mmol) in molar ratio of 3:8, 26:7, and 3.3:0

was added, corresponding to a concentration of azobenzene monomer in polyure-

thane film of 15, 5, and 0%.

Component II

DBDI (15 g, 57 mmol) was dissolved in the toluene–methylene chloride mixture

(85 g), in a weight ratio of 15:70. The formed solid was filtered.

Component III

DABCO (3 g) was dissolved in toluene (97 g), heated at reflux until clear solution

was obtained.

Component I and II was mixed in a weight ratio of 7:10, in the presence of

component III (0.2–0.3 mL), at room temperature for 2.5–3 h. The polyurethane

varnish was degassed in vacuum and quickly transferred to a glass plate, using a

doctor blade (e = 3 mm). The solvent was evaporated in atmosphere at room

temperature for 7 days. The film was removed from the glass plate by soaking it in

the cold water. A schematic diagram for the preparation of the poly(urethane-urea)

varnish is presented below.
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Results and discussions

New diol maleimide chromophore (4) was prepared by substitution reaction

between dichloromaleimide with azobenzene units (3) and 2-mercaptoethanol in the

presence of alcoholic sodium hydroxide solution in accordance with Lynch method

[32] (Scheme 1). The structure of compound 4 was identified by IR, 1H-NMR, 13C-

NMR spectrometry, and elemental analysis. Elemental analysis data are in good
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Scheme 1 Synthesis of the compound 4
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agreement with the calculated values. The 1-NMR (Fig. 1a) and 13C-NMR (Fig. 1b)

spectra confirmed their structure. The aromatic protons of compound 4 appeared as

doublet and multiplet at 8.13–7.53 ppm. The methylene protons from 2-hydrox-

yethylthioether groups appeared as two triplets at 3.71 and 3.45 ppm, respectively,

with coupling constant J = 6 Hz. 13C-NMR spectrum shows signals for methylene

carbons at 34.15 and 60.76 ppm, 12 signals for aromatic protons in the range 118.58

Fig. 1 1H-NMR (a) and 13C-NMR (b) spectrum of compound 4
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and 152.04 ppm, signals for –C=C maleimide, C=O maleimide, and CO amide at

147.88, 164.87, and 165.26, respectively (Fig. 1b).

The poly(urethane-urea) varnishes were prepared by the reaction of two

components solution, one containing hydroxyl compound and the second ortho-

component having diisocyanate, in the presence of DABCO as catalyst. The

components of polymers P-(0, 5, 15) are presented in Table 1.

The ATR-FTIR spectra of the copoly(urethane-urea) films were performed on

solvent cast thin films (Fig. 2). Absorption bands due to the NH stretching at

3350 cm-1 (hydrogen-bonded) and urethane, amide and maleimide carbonyl at

1750–1700 cm-1, CH2 stretching at 2857 cm-1 (symmetry) and 2950 (asymmetry),

benzene C=C stretching at 1590 and 1415 cm-1, and C–O–C stretching at

1210 cm-1 were observed. The reduced viscosities were ranged between 0.23 and

0.36 dL/g measured in DMF solution at 25 �C.

To examine the effect of hydrogen motions of maleimide-azoaromatic units

on their photoisomerization, the kinetics of photochemic trans to cis and thermal

cis to trans back isomerization in film state has been studied. Experiments by the

mean of a high pressure Hg lamp were carried out to record the changes

appearing in the electronic absorption spectra during UV irradiation. The azo

polyurethane shows a strong absorption band centered at 353 nm, which is

Table 1 Components of poly(urethane-urea)s

Sample Component (mol)

DBDI PEGA Monomer 4 TMP DEG

P-0 8.6 2.5 0 0.9 3.3

P-5 8.6 2.5 0.7 0.9 2.6

P-15 8.6 2.5 2.4 0.9 0.9
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Fig. 2 ART-FTIR spectra of polymers
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assigned to a very intensive p–p* transition of the azobenzene chromophore

[33]. Following the evolution of photoprocesses in polymeric films (P-5)

subjected to irradiation, it was observed that the absorption maxim at 353 nm

corresponding to p–p* transition decreased slowly as the UV light exposure time

increased (Fig. 3).

This decrease leads to slower trans–cis photoisomerization of azo chromophores

in the solid state.

Introduction of imidic monomer containing azobenzene groups in the backbone

as chain extended does not affect much the mechanical behavior of polyurethane

films obtained from diethylene glycol and chain extended. So, the stress–strain

curves of polymers P-(0, 5, 15) were presented in Fig. 4.

Fig. 3 Charge of UV–Visible spectrum of polymer film (P-5) by irradiation

Fig. 4 Stress–strain curves of polymer films
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Most data appeared to follow the characteristic curves expected for

elastomers; the stress increased relatively steeply at low strain, followed by a

broad strain-softening zone, and a region of lower, but still positive slope, at

intermediate strain. With the incorporation of imidic monomer in the segments

of polyurethane, the modulus increases, and the elongation and strength at break

decrease (Table 2).

Dynamic mechanical properties

Thermal and thermomechanical properties of poly(urethane-urea) films

The thermal behavior of poly(urethane-urea) films was investigated by DSC, DMA,

and TGA measurements. The DSC traces of polymers P-(0, 5, 15) are given in

Fig. 5, and are plotted as a function of temperature (Fig. 6). The data of thermal

transitions (Tg), glass storage modulus at -50 �C (E0(-50)), rubbery modulus at

80 �C (E0(80)), and height of tan d peak are presented in Table 3.

Table 2 Tensile properties of

poly(urethane-urea) films
Code Tensile strength,

MPa

Elongation at

break, %

Modulus,

MPa

P-0 13.23 358.15 7.02

P-5 6.10 228.87 32.20

P-15 5.50 206.01 33.67

Fig. 5 DSC scans of polymer films
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Dynamic mechanical curves (E0 = f(T)) of films exhibited a high plateau

corresponding to the glassy state modulus due to the elastic energy stored in the

crystalline and glass state amorphous domains and another plateau attributed to the

rubbery state modulus due to the entropy owed to the two-phase structure of

the material (Fig. 6). The values of Ta
s of films P-(0, 5, 15) corresponding to the

relaxation associated with the glass transition of the soft phase, determined by onset

temperature of the decrease in E’, varied in the range of -9.9 and -26.2 �C (the

minimum value belongs to film P-15). The storage modulus (E0) of poly(urethane-

urea) films decreased from 1.1–3.2 GPa to 2.58–7.8 MPa in the temperature range
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Fig. 6 Storage modulus (black line) and tan d (gray line) profiles of polymer films

Table 3 Dynamic mechanical analysis of poly(urethane-urea) films

Code Ta
sa �C Tg

b �C E0(-50 �C)c

GPa

E0(80 �C)d

MPa

Height of

tan d
IDTe �C Temperature of %

weight lossf, �C

5 10

P-0 -9.9 -12.4 1.10 2.58 0.537 316.5 324 P-0

P-5 -20.8 -22.8 1.71 3.92 0.326 302 312 P-5

P-15 -26.2 -23.4 3.20 7.80 0.284 302 312 P-15

a Glass transition temperature of soft segment of polymer by DMA measurement, corresponded to onset

temperature of the decrease in E0

b Glass transition temperature of soft segment of polymer by DSC measurement
c Glass storage modulus at -50 �C
d Storage modulus at 80 �C (rubber state modulus)
e Initial decomposition temperature
f Temperature for 5 and 10% weight loss
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of -50 and 80 �C. As can be observed in Fig. 6, loss factor (tan d) exhibited one

maximum peak for films P-(0, 5, 15) and their height decreased with the increase in

the maleimide chromophore (monomer 4). The thermal stability of films P-(5, 15)

containing maleimide chromophore as chain extender is weaker than that of film P-0

based on the diethylene glycol as chain extender. Temperature for 10% weight loss

of films P-(5, 15) ranged between 325 and 330 �C and for film P-0 was 340 �C

(Table 3).

Surface characterization of poly(urethane-urea) films

Figure 7 shows two- and three-dimensional AFM image of film P-5. Surface

morphology and external structure of films are investigated using AFM. AFM

allows qualitative understanding of the external structure through direct observation.

Typical AFM height images for the films P-(0, 5) are shown in Fig. 7. As can be

observed in Fig. 7, the difference of the surface roughness of the specimens is quite

obvious. The surface roughness slightly decreased with the chain extender content.

Wettability could be estimated by the determination of the dynamic contact

angle. Four samples were immersed and withdrawn into and out of the liquid

simultaneously measuring the force acting on the samples. The advancing and

receding contact angles were determined from the obtained force curve. Advancing

and receding contact angle measurements on the casting films from polyurethanes

based on monomer 4/dibenzyl diisocyanate/PEGA could provide more information

on the hydrophilicity of films and hence their wetting ability. The advancing and

receding contact angle increased with the increase of the amount of azobenzene

maleimide diols content (4) for polymers P-(0, 5, 15) (Table 4).

Fig. 7 Tapping-mode AFM 3D height image of films P-0 (a) and P-5 (b)

Table 4 Water contact angle of copoly(urethane-urea) films

Sample hadv (�) hrec (�) Hysteresis (�)

P-0 71.23 ± 3.9 44.63 ± 0.58 26.60 ± 0.58

P-5 82.65 ± 1.51 51.95 ± 0.15 30.70 ± 0.15

P-15 87.91 ± 1.155 52.61 ± 0.015 35.30 ± 0.015
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